50 research outputs found

    On the mean width of log-concave functions

    Full text link
    In this work we present a new, natural, definition for the mean width of log-concave functions. We show that the new definition coincide with a previous one by B. Klartag and V. Milman, and deduce some properties of the mean width, including an Urysohn type inequality. Finally, we prove a functional version of the finite volume ratio estimate and the low-M* estimate.Comment: 15 page

    A characterization of the support map

    Get PDF
    AbstractIn this short note we give a characterization of the support map from classical convexity. We show it is the unique additive transformation from the class of closed convex sets in Rn which include 0 to the class of positive 1-homogeneous functions on Rn. This will be a consequence of a theorem about transforms from the class of convex sets to itself which preserve Minkowski addition

    Almost Euclidean sections of the N-dimensional cross-polytope using O(N) random bits

    Full text link
    It is well known that R^N has subspaces of dimension proportional to N on which the \ell_1 norm is equivalent to the \ell_2 norm; however, no explicit constructions are known. Extending earlier work by Artstein--Avidan and Milman, we prove that such a subspace can be generated using O(N) random bits.Comment: 16 pages; minor changes in the introduction to make it more accessible to both Math and CS reader

    Almost-Euclidean subspaces of â„“1N\ell_1^N via tensor products: a simple approach to randomness reduction

    Get PDF
    It has been known since 1970's that the N-dimensional ℓ1\ell_1-space contains nearly Euclidean subspaces whose dimension is Ω(N)\Omega(N). However, proofs of existence of such subspaces were probabilistic, hence non-constructive, which made the results not-quite-suitable for subsequently discovered applications to high-dimensional nearest neighbor search, error-correcting codes over the reals, compressive sensing and other computational problems. In this paper we present a "low-tech" scheme which, for any a>0a > 0, allows to exhibit nearly Euclidean Ω(N)\Omega(N)-dimensional subspaces of ℓ1N\ell_1^N while using only NaN^a random bits. Our results extend and complement (particularly) recent work by Guruswami-Lee-Wigderson. Characteristic features of our approach include (1) simplicity (we use only tensor products) and (2) yielding "almost Euclidean" subspaces with arbitrarily small distortions.Comment: 11 pages; title change, abstract and references added, other minor change

    Estimation in high dimensions: a geometric perspective

    Full text link
    This tutorial provides an exposition of a flexible geometric framework for high dimensional estimation problems with constraints. The tutorial develops geometric intuition about high dimensional sets, justifies it with some results of asymptotic convex geometry, and demonstrates connections between geometric results and estimation problems. The theory is illustrated with applications to sparse recovery, matrix completion, quantization, linear and logistic regression and generalized linear models.Comment: 56 pages, 9 figures. Multiple minor change
    corecore